Step of Proof: p-fun-exp-add-sq
11,40
postcript
pdf
Inference at
*
2
2
1
1
I
of proof for Lemma
p-fun-exp-add-sq
:
.....equality..... NILNIL
1.
A
: Type
2.
f
:
A
(
A
+ Top)
3.
x
:
A
4.
m
:
5. 0 <
m
6.
n
:
. (
can-apply(
f
^
m
- 1;
x
))
((
f
^
n
+(
m
- 1)(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
- 1;
x
))))
7.
n
:
8.
can-apply(
f
^
m
;
x
)
9.
(
n
= 0)
10.
(
n
+
m
= 0)
11.
(
n
= 0)
12.
(
m
= 0)
(
f
o
f
^(
n
+
m
) - 1 (
x
)) ~ (
f
o
f
^
n
(do-apply(
f
^
m
- 1;
x
)))
latex
by ((Unfold `p-compose` ( 0)
)
CollapseTHEN (RepUR ``can-apply do-apply`` ( 0)
)
)
Co
CollapseTHEN ((Subst' ((
n
+
m
) - 1) ~ (
n
+(
m
- 1)) ( 0)
)
CollapseTHEN (((Try ((Complete (Auto
))
C
))
)
CollapseTHEN ((Subst' (
f
^
n
+(
m
- 1)(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
- 1;
x
))) ( 0)
)
CollapseTHEN (
C
((Try ((Fold `do-apply` 0)
CollapseTHEN (Trivial)
))
)
CollapseTHEN ((if ((0
C
) = 0) then BackThruSomeHyp else BHyp (0) )
)
)
)
)
)
latex
C
1
:
C1:
can-apply(
f
^
m
- 1;
x
)
C
.
Definitions
s
~
t
,
n
+
m
,
f
(
a
)
,
do-apply(
f
;
x
)
,
f
^
n
,
n
-
m
,
#$n
,
f
o
g
,
can-apply(
f
;
x
)
,
if
b
then
t
else
f
fi
,
t
T
,
SQType(
T
)
,
s
=
t
,
left
+
right
,
Top
,
,
{
x
:
A
|
B
(
x
)}
,
,
A
B
,
A
,
False
,
{
T
}
,
x
:
A
.
B
(
x
)
,
P
Q
origin